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SUMMARY /7504’
This report is submitted in partial fulfillment of the contract in ''Space
Flight and Guidance Theory,' No. NAS8-11040. It presents a discussion of
Lagerstrom and Kevorkian's two-variable expansion method for the compu-
tation of lunar trajectories. Section 2 discusses the general background of !
the method in terms of singular perturbation theory. Section 3 discusses
the major steps in the development of a uniformly valid solution for earth-
moon trajectories and Section 4 presents a slightly different approach to the
same problem,.
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1. INTRODUCTION

In refs. (3) and (4) a new method was suggested by Lagerstrom and
Kevorkian for the computation of lunar trajectories. The method was similar
to one which had been used successfully in a number of singular perturbation
problems of boundary layer theory (refs. 1, 2). The result of approaching
the lunar trajectory problem as a singular perturbation problem was a uni-
formly valid solution (i.e. valid everywhere in the earth-moon space) to
first order in the parameter for a certain class of trajectories. The class
of trajectories is that which starts in a neighborhood of order - near the
earth and arrives near the moon to within a neighborhood of order <. .
Similarly to other singular perturbation problems, this uniformly valid
solution was obtained by formulating two solutions, one valid near the earth
(the '""outer solution') and the other valid near the moon (the "inner solution'').
The inner solution is expressed in terms of "blown up'" variables. The outer
and inner solutions are left undetermined by introducing a number of con-
stants; these constants are determined such that the singularities in the
outer and inner solutions cancel when they are combined to form the ''com-
posite solution. "

The basic idea of the method was worked out in its application to the
two-fixed center problem with special initial conditions (ref. 3); then the
same technique was used in the restricted three body problem with more
general initial conditions (ref. 4). One of the most interesting results was

the finding that the outer solution must contain a part which is proportional




to the small parameter 4. , or else it cannot be matched to the inner
solution; the outer solution can thus be interpreted as an earth centered
Kepler ellipse with a first order correction to take care of the moon's per-
turbation. In comparing this method with the usual way of ''patching conics'’,
it was thus stated that a patched conic method could not be accurate, unless
the geocentric ellipse were corrected for the moon's perturbation. The two-
variable expansion method was thus offered as an improvement over patched
conic methods and it appeared to be (at least initially) equally practical.

This report presents an explanation of the method (in Section 3), based
mostly on ref. 4, and the beginning of a somewhat different approach (in
Section 4). The claim that this report is an '"explanation’’ is made with all
modesty; it is an explanation in the sense that it presents and discusses the
major steps of the developments in ref. 4, leaving out many of the laborious
details. In this way it is hoped that the reader may gain a full appreciation
and understanding of this very interesting method; this report may thus serve
as an introduction to the reading of refs. 3 and 4. This explanation is pre-
ceded (Section 2) by a general discussion of singular perturbation theory,
based mostly on ref, 1 and 2. In particular with respect to this section,
and the conjecture and theorem on which the discussion is based, the authors
gratefully acknowledge personal communication with Dr., Kevorkian.

In Section 4 the beginning of a slightly different approach to the same
problem is presented. Whereas the work by Lagerstrom and Kevorkian is

formulated in inertial coordinates, this new approach makes use of rotating




coordinates, and the Jacobi Integral in order to solve the problem as a third

order system of differential equations.



2. DISCUSSION OF THE TWO-VARIABLE EXPANSION METHOD

The method used by Lagerstrom and 'Kevorkian to formulate a uniformly
valid representation of earth-moon trajectories is that which is used in the
singular perturbation problems of boundary layer theory. A singular per-
turbation problem may be characterized as follows: a differential equation

L //X/. &€, {}: 2 and boundary conditions/g/q,’ 8) = © depend on a
small positive parameter £ in such a way that the order or type of L
change when £ =0 , while the number of boundary conditions remains unchanged.
Thus, if ééarepresents the solution of Z/X) éL) 0) =¢ , one may not
expect that Z{ approaches Y/ uniformly as £ — 2.

Fundamental to the solution of singular perturbation problems is the

introduction of certain limits. Consider functions %of £ , positive and

continuous in L & ~ ﬂ and tending to a definite limit as £—> O; intro-

duce a new variable ><f—_— z , then a limit on FZX) &) is defined
as
/0;17 F(X 8) L%/L F{(% g} X{ fixed and F O-

F S > )

If/z /, the limit is usually called "outer limit, ' and X the "outer
variable', since in the boundary layer problem which motivated this formu-
lation this limit presents a satisfactory approximation in the physical space
away from the boundary. An '"inner variable' and '"inner limit" are obtained
in many problems by putting /-«; £ ; the inner limit is an approximation in
that region of the physical space where the differential equation changes

order (or type) as & —> . As the inner variable is kept constant, the




physical variable X tends to & as £ —= O ; it is as if the problem is
discussed in terms of ''stretched" or '"blown-up'' variables. Theoretically

of great importance are also the concepts of '"intermediate variable' and
"intermediate limit, ' which are intuitively understood as obtained by a function
]//gj, where the order of magnitude ﬂ(/{é)} is in between 0(//) and &/Q)
A more rigorous discussion is given by Kaplun in ref. 1.

The formulation of a solution based on inner and outer limit is based
on a '"matching'' of the two limits, But since there is no a-priori reason
why the regions of validity of inner and outer limits should overlap, it may
seem to be surprising that this has been so successful in many problems.

It is here that Lagerstrom and Kaplun have contributed greatly to the under-
standing of the problem by using the intermediate expansion to bridge the
gap. In ref. 5 Erdelyi discusses this in some more detail, but (as here) also
in an intuitive manner.

The method by which a uniformly valid solution of singular perturbations
is obtained is based on a conjecture and a theorem. The conjecture is: the
solution of the limiting differential equation (obtained by subjecting the
differential equation to the above defined limiting process) is identical with
the limiting approximation of the exact solution. Thus, if an exact solution
cannot be obtained directly, one can get an approximation (actually an
asymptotic expansion) by solving the limiting differential equation. The
validity of this conjecture is supported by a number of problems to which

exact solutions are available.



In a singular perturbation problem it will be necessary to combine at
least two limiting solutions (i.e. inner and outer) to obtain a uniformly valid
solution, that is a solution valid in the entire physical space of the variables.
Kaplun's extension theorem bridges the gap which may exist between the
regions of validity of the limiting solutions. The formulation of the exten-
sion theorem requires the definition of ""equivalence classes''. Let// and ,?'
be functions of £ , positive and continuous and tending to a definite limit
as &—>0, then //f) and/q' /5) belong to the same equivalence class

if
&4—4:/&2-240‘:

>0 g

A partial ordering of equivalence classes is defined by

Mfz&wﬁﬁ /f L £~ .

£ —>0 f

A set S of equivalence classes is convex if, for every ord% and ordg,
in 5, ord f L ord% Aordﬁ, implies ord»%’ isin 9 . Open and
closed convex sets of equivalence classes are defined according to the usual
definitions of set theory. The extension theorem may now be formulated as:
If an approximation is valid to order £ in a closed set S its domain
of validity may be extended to an open convex set 5 , containing S .
Thus, the inner and outer expansions are valid in larger regions than
those for which they were derived. The regions of validity of inner and outer
expansions may now overlap or else they may be joined by an intermediate

expansion. Whether the inner and outer expansions are matched directly
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or by the use of an intermediate expansion, the matching is performed by
using overlapping regions of validity provided by the extension theorem.
It will be seen that in the earth-moon trajectory problem the matching can
be performed directly without the use of an intermediate expansion.

The following illustration may be of some help in understanding the
meaning of the expansion theorem. In figure 1 the shaded areas in the x)g
space indicate the regions of validity of inner and outer expansions in a

problem with singularity at x =0

,
7

Outer Expansion

/
7

//I// v

C Intermediate Expansion X

Fig. 1 EXTENSION THEOREM

The outer expansion is valid for a range of X bounded away from zero.
The region for the inner expansion shows the typical behavior near the
singularity: As £ tends to zero the physical variable X tends to zero
also; the inner variable )(g = —g— remains finite. It is clear that for

small & the regions of validity of inner and outer expansions do not over-
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lap. But the expansion theorem provides for small additional regions of
validity, indicated by the dashed lines in fig, 1. These regions can now be

used to provide overlap with an intermediate expansion (obtained by intro-

e

ducing the intermediate variable X)C = ][) , ordg < %/{k ord/ )

and matching can be performed.

The plan for formulating a uniformly valid solution of a singular per-
turbation problem is now clear. An outer solution of the differential equation
is obtained, satisfying some of the boundary conditions. Typically, the
boundary conditions near the singularity are neglected, but the outer solution
must have as many arbitrary constants as there are neglected boundary
conditions. Next, the problem is ""blown up'' in the region near the singularity
by the transformation to inner variables. The boundary conditions which
were neglected in the outer solution can now be satisfied by the inner solution,
but the other boundary conditions will in general not make sense. Therefore
the inner solution is partly indeterminate. To remove this indeterminacy
the inner and outer solutions are ''matched' as follows. The outer solution
is evaluated at the inner region, the inner solution is evaluated at the outer

region and these two functions are equated after the introduction of the trans-

X

formation X = . Finally, a "composite solution'' is obtained by
FoFE)

adding the inner and outer solutions and subtracting either the inner solution

evaluated at the outer region or the outer solution evaluated at the inner

region. This either/or condition reflects of course just the matching con-

dition. The matching and the formulation of a composite solution described




here is possible when the regions of validity of inner and outer expansions
overlap, if this is not the case the same procedures have to be followed on
either side of an intermediate expansion,

The extension theorem is the basis for success in matching; the con-
jecture makes it plausible that the composite solution is uniformly valid,
even though the inner and outer solutions themselves are only valid in their
respective regions.

The application of these principles to the earth-moon trajectory problem
takes the following form. The equations of motion of the planar restricted
three body problem (in non-rotating coordinates) are formulated with one of
the coordinates, X , as the independent variable. Uniformly valid expres-
sions are sought for the time and the other coordinate as functions of X and
the small parameter /(¢ , the earth-moon mass ratio. Near the earth the
influence of the moon is seen in the equations of motion as a perturbation
(proportional to/é(,) of the Kepler equations. Clearly, in this problem the
singularity is located at X—> |, since near the moon the attraction of
the moon itself is the major force. An outer solution is formulated in the
physical variables X , 4 and Y ; it describes the earth-centered part
of the trajectory. An inner solution is formulated in the '""blown-up'' variables

>-(. , E and 9 , the differential equations for which show the moon's
attraction as the major force. In principle the outer and inner solutions are

asymptotic expansions of which the separate terms can be obtained by sub-

- . Z
stitating 7 =74 » e 4 + 4*f, Foovir ) Y= Yot Ay, #ALY, F i



in the equations of motion, ordering the results according to powers of A
and solving the equations for _7_"0} )/& , ZE// \// ,,,,,. 1n succession. A
major result of Lagerstrom's and Kevorkian's investigation was the finding
that, in order to formulate a first order solution, the outer solution rr.lust
contain the correction of order A to the earth-centered Kepler trajectory.
The reason is that the angular momentum near the moon (for a passage at
distance of order/{,u ) is of order A s and can thus only be defined when
terms of order <4 are included in the approach trajectory. The matching
of inner and outer solutions is performed by equating term by term the results
of evaluating the outer solution at X = / and the inner at )7 = -« ; for
this purpose the inner as well as the outer solution are expressed in the
inner variable. The results of the matching are the elements of the moon-
centered hyperbola and the phase constant of the moon. The composite
solution is obtained by adding the inner and outer solutions and subtracting
the outer expansion of the inner solution. From the form of inner and outer
solutions it is clear that no intermediate solution is required.

In their first paper on the three-body problem (ref. 8) Lagerstrom
and Kevorkian treated the problem of two fixed force centers (the Euler
problem). They discussed trajectories which leave from the center of the
larger mass, the Kepler part of the outbound trajectory being a straight
line. The major result was that 1) a uniformly valid solution to order .o
could indeed be obtained and 2) the outer solution must contain a correction

of order (  in order to be able to determine the constants of the inner
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solution. Because of the very special initial conditions the outer and inner
expansions are of simple form and therefore the principles of the method are
clearly demonstrated. In their second paper (ref. 9) they treated the more
practical restricted three body problem with arbitrary initial conditions
(although restricted to a neighborhood of order s near the earth). While
following the same method in principle, the details of the analysis are some-
what obscured by the added difficulties from the more general initial condi-
tions and the motion of the moon. The following section refers in particular
to this paper; it interprets and explains the method by lifting out the essential
difficulties and omitting all easily understood details. References 10 and 11
discuss some numerical aspects.

The following section contains an outline and discussion of ref, 9. It
is hoped that, by concentrating on the major difficulties, that section, together
with the general discussion in this section, will be useful for the better under-
standing and appreciation of the very interesting method of Lagerstrom and

Kevorkian.
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3.

TWO-VARIABLE EXPANSION METHOD FOR EARTH-MOON
TRAJECTORIES

3.1 Equations of Motion; Outer and Inner Variables

In geocentric, non-dimensional, inertial coordinates X , }l

the equa-
tions of motion for the planar restricted three body problem are:
v X E/ X :
)(‘ 7 - —_— = Ll et m I
Hllmp)ms = A f T[ 2 £ (1)
. / N . NN
CF () = ez %—-—.('m_}i_
v ) -3 T ‘ 3 Y vm
where

/i

{ is the earth-moon mass ratio, ————  and the coordinates
% //Zc M,

o=

of the moon are

,.ém = Cou(£-T) J //m = 2 /Z' -7) (2)

7' is a phase angle which is to be determined later,.

The goal is to formulate uniformly valid expressions (i.e. valid near

the earth as well as near the moon) to order ««- for trajectories which

1

leave from a neighborhood of order (< near the earth and reach a neighbor-

hood of order/a, near the moon.

The outer variables, to be used for the outbound trajectory near the

earth, are the physical variables ¥ /‘/) f‘

The inner variables will be
chosen as

—

X X = ey (/f_—:Z:)

_ Yo aun (t~77)
/_,é(_— J >/ = A
/ (3)
e e
e

rd
I

1
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This choice assures that the motion near the moon is Keplerian up to
and including the first order of 4 and that the velocity far from the moon
is of the same order (i.e. of order 1) as the velocity far from the earth,.
The additional phase angle 7 is introduced so that ‘Z_ can be made to
vanish at perilune.

1/3

It is interesting to note that if a scale factor of Z¢ is used in the

definition of *)Z and :7 and the time is left unscaled, the equations of
motion in terms of >—< , SI- and {_: after letting _tc——> 0 are the Hill
equations; these equations are valid in Hill's region, i.e. a region of order
/¢(__1/3 near the moon. If an intermediate solution were required, these equa-
tions could provide it., It will be seen that the inner and outer solutions can
be matched without using an intermediate solution, although this cannot be
expected a priori. Apparently, for the class of trajectories considered
here (i.e. coming from a neighborhood of order ¢¢ near the moon), the
passage through Hill's region is so fast that Hill's equations do not need to
be considered.

It will be convenient to introduce the coordinate X as the independent

variable; the matching of inner and outer solutions is then done on the basis

of distance instead of time. The equations of motion in the outer variables

are then V4
z X _
-5 7 (1=4¢) 5 =2F
>/// Z—é//_/ (4)

A pi) S,
e S
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The equations of motion in inner variables, valid near the moon, are
Keplerian up to and including the first order of AL and do not have to be
written here. Terms proportional to the first power of ¢¢ are not present
because of the scaling of the variables and because the moon centered X,

—

7/ axes are taken parallel to the earth centered X , \/ axes.

3.2 Outer Expansion

The right hand sides of equs. (4) represent small perturbations due to
the moon; near the earth the solution of equ. (4) is thus nearly Keplerian and
it will be convenient to specify the initial conditions of the trajectory by giving
the values of the Kepler integrals. The integrals to be chosen are the total
energy %e » the angular momentum Z& the location of perigee and the
time of perigee passage. In order to reach the neighborhood of the moon,
the total energy must be C)(/) ; the initial velocity is thus (Qzuzj;) and,
since the trajectory leaves from a neighborhood of order

: £
the angular momentum is &//c 7‘) . Without loss of generality the perigee

L. near the earth,

may be taken to be on the x-axis (on the side of the earth opposite to that of

the moon). The initial conditions are thus

at wW=o0 : %;.:_- -/02 (5)

perigee on x-axis

and the time is specified by requiring that the Keplerian approximation is

exact at X = O to all orders of A,

14




1/2

Since the angular momentum is of order _£¢'™ it is clear that, for the

12

class of trajectories discussed here, >/ is also of order . . The

asymptotic expansions for £ and >/ may thus be taken to be
/ / ,
LX) = Zo (X, )+ L (X) #.00 (7)

and YOX, ) = L (X ) + Ay (K)# e (®)

The differential equations for ".é, , £, >/ and >/ are found by
- v / /L I
substituting (7) and (8) into the equations of motion (4) and by ordering the
results according to powers of ¢ . The equations for ic and 71- are
3.

of course just the Keplerian equations (equ. 4 with zero in the right handsides)
and their solutions do not have to be repeated here. However, one detail
must be pointed out., Whenever the parameter - appears as ( / — ),
the nondimensional gravitational constant, it is not subjected to the limit
process. Furthermore, the angular momentum constant has been written

4 :
as ¢ z }\ and for these two reasons the parameter (. appears thus in
the expressions for the Keplerian part of the trajectory. This seems at first
to be in contradiction with the principle of the singular perturbation method
according to which the zero-order solution would be independent of the
small parameter. Allowing the small parameter to appear in the Keplerian
part results in somewhat more convenient expressions. The first part of

+ (X, ,Lt,) is now written as

Lo(x ) = L (%) 40ty (%) (9)

15



If the solution had been started with {00 (X) , according to a strict
application of the limit process it would be necessary to consider a separate
"boundary layer' near the earth, because the relative orders of magnitude
of the terms in ‘fo (X} L) are different for X = O6i) and X = 0(#)
This nonuniformity has nothing to do with the moon's perturbation and is
taken care of by letting .- appear in the Keplerian solution.

The equations for the first order corrections {/ and >/' are:

V4
i

V4 7 /

7/ — KOO )// N + )(,
/ E ] T3 —
LS 2, X3 = 7o

0

with /£ = {/lx)],a,:o and fﬁzl[?/x)za,sa'

Because the initial conditions have been chosen such that the Kepler solution

(11)

is exactly valid at X =p , the initial conditions for 1/:,/ and )/, are

simply

zl/ (0) = Y, (o) =0  and -Z, //c) and Y ‘o) .

3.3 First Order Corrections in Outer Expansion

The first order integrals of (10) and (11) are easily obtained as

X
)

4= 4 e ¢ 2

~y, =1 c,,/f /?/754{/"/{ (13)

and

16




In principle ;L/ and >// are thus obtained by quadratures but so far
no analytic expressions for t'/ and Y, have been found. The functions ,»;/
and 70 are unbounded for X —> | and their behavior near X =/ can
be studied by expressing the several parts of ,f and Z/O in Taylor series

near X =1/ . The results are

U L=
:/X): 3 1z + 7 / N
(rte?) | (=07 7 (1=X)

0= Lo |y 1 [ ) e

(+L32)7 | (1-X)F T (1-X)
where @()() and /ﬁ/x) are the regular parts of { and 70 ,

/
A= Y20-p) = Z770) (16)

which is the X velocity of the Keplerian trajectory at X =/ .

+ Pix) U

and

Using (14) and (15) the first order corrections to the Keplerian part

of the outer expansmn may be written as

0= / LB - Gyl f)f(/’w)/ f/éc/f}

M= /{" ﬂ[/f (f)(/ 57 o '//ﬂéz/%/?f/‘/fj"f

Since (at least to this time) no analytic solutions for f and )/ have

been found, the complete trajectory can only be computed by evaluating the
quadratures numerically. Clearly, this causes numerical difficulties be-

cause of the singular behavior near X =/ . It is of some help in establish-

17
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ing a computer program based on this method that £, (X) and Y, (x) depend
on only one parameter, namely the total energy - /)z . The corrections
could thus be computed and tabularized once and for all. Also, near X =

-/:I and yl may be expressed much more simply as
-% . |
2, = (1#02) L (1) + p () + ) 19)
=3 |
v, = (1+L?) Z?//-x) + d(r) + OU) 0

where )~ and of are functions of the total energy alone. Unfortunately,
Y and o{ become unbounded as 1/0__9 /, that is for the minimum
energy trajectories. This difficulty has been treated in detail in ref. 6.
Equ. (19) and (20), and particularly the functions Y and J s play

an important role in the matching of outer and inner expansions.

3.4 The Inner Expansion

The equations in the inner variables X , y and Z have _Zc only
to the second and higher powers. Since the present purpose is to develop
a solution to first order in 4 the moon centered part of the trajectory is
thus Keplerian and, in particular, hyperbolic. It will be convenient to
characterize this hyperbola by the four constants
A , the X component of velocity at X=— o=
V , the ? component of velocity at X == o2

|

K — /4 K—- /3//(, related the direction of the asymptote
/ U
and 4 =0 at perih’me.

18




In the definition of /{ ,

/4—_: i 8 col /Q:: ZE v &

@ is the semimajor axis, & the eccentricity and & is the counter-
clockwise angle between the X axis and the apse line of the hyperbola. The
expressions ‘7 (i) and f—, (f) do not have to be given here (since they are
Keplerian) except as they are needed for the matching of inner and outer
solutions. For this purpose their values as X —>~are needed. These

are

S Vg AY-BU, e
Cé/ y 74(,/
= X205 a7 Yoy —2X
/ /7 X, ar” e (22)

as follows readily from the equations of hyperbolic motion (most conveniently

by letting the eccentric anomaly approach ~ ).

3.5 Matching of Inner and Outer Solutions

The purpose of matching the inner and outer expansions is to determine
the constants of the moon,centered hyperbola, thereby also relating the
singularities in the two expansions in such a way that they cancel each other
in the composite solution. Because the singularities are logarithmic in
nature in the inner as well as the outer solutions, such matching can appar-
ently be achieved without the use of an intermediate expansion.

The geometry of the matching is illustrated in Fig. 2, as much as it

can be illustrated. The part of the figure related to the inner expansion is

19



drawn in the scaled coordinates ((>'< ) q ) and must be thought as infinitely
small in comparison with the figure for the outer expansion. It may be
remarked that this matching is strictly analytical, whereas the ''patching"

of conics is strictly geometrical. A direct comparison of the two methods

is therefore difficult; such comparison should be based on the final numerical

results.

~(|

OUTER EXPANSION INNER EXPANSION

:f,:-fw(X)f/ofm/X) + pt (X) L =T v ut +7T
Y= ety )+ Y, () V =¥ + aon(£-T)

Figure 2 GEOMETRY OF MATCHING

The matching is performed by evaluating the outer expansion at X\ =|
and equating the result term by term to the inner expansion evaluated at

N = —>%, both expansions being expressed in the inner variable. (The

important thing is that both expansions are expressed in the same variable;

20




the present choice of inner variable is simply for the sake of convenience.)
The part of the outer expansion identified with f,/o is evaluated near

X = | by writing two terms of its Taylor expansion at X\ = :

Lo () = 2,00 4 (=1L D)= £ (1) 4 (x-1) L

using equ. (16). The inner variable is introduced by X = //L; + Coo /i— - T)
from equ. (3), and if it is assumed that [t - T) is small (as it will be

shown to be), there results

L)~ t @)+t fICL LT e

The introduction of the inner variable into the expression for 'ﬁl
(equ. 19) is taken care of by putting (/——)() = /[LS(— , the term cos (t"T)
in equ. (3) being put equal to unity with enough accuracy since f/ is multi-
plied by/u. . By combining equs. (7), (9), (19) and (23), the outer expan-

sion evaluated near X =] and expressed in the inner variable is thus
25) =2,0) + Xl — 4 (-T2
-3 _ .
+ /44[2[ 0) +(1+42) z[ﬁ;/—x}#—.@?/@] oy (py(u)

From equ. (3) and (22) follows for the inner expansion evaluated at X == _ —
’ _ -1/ — ___;’ / -
£(x)= [ + 2“+/u[x L(, _ AL zfo/—x)

+ a /ﬂ,/?% %5 (25)

Now, if the phase angle T is chosen to be composed of several parts

according to powers of /{L as follows,

21



i
o3 .
T=1T, # i Zg_’ el (26)
the third term in equ. (24) is to first order in/{.u -—-l/[(,,,7/_ 254-
2 %5
t ()Z) can be made identical by making the

following choices for 7: , L , and T

and the two expressions for

——

L=z _U)
cc (27)
U, = U

/

" . (28)
T = - L& 7/7 —//LZf/_—-/-j /é-,zlé —é (1) —

-(/f%‘) »%/c— )///) /444 # £/747 Q;’é
(29)

. -1 —
Note that this implies that // f/,[/ l) -

; this will be confirmed
by the matching of the expansions for \/

From equ. (8), (20) and (3) follow for the outer expansion of \/

evaluated near - =

and expressed in the inner variable X ,

/(2):////& /5'0) f/a[(/fwz)d'yz/j&? (,z)f,é;/c)f «f(f’i (30)

Since the Keplerian part of this expression is multiplied with _¢ /2, its
value near X = | is obtained simply by substituting X=1/ ; no Taylor expan-

sion need be used here because the second term would be proportional to

£ 32

From equ. (3) and the expression for the inner expansion, equ. (21)

follows for the inner expansion evaluated near X = - oo,
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7(,)?) :/u,[z%, Y - /\’] + (+-7)

where it is again assumed that (£-7 ) is small, so that ,da"z, (ﬁ - T) = (f -7—) R
This assumption is shown to be valid (at least to order /é(/) by equ. (25) and
(29). 1If then the expression for i()’(’) near X ={ (equ. (25)), and the evalu-

ation of T (equ. (29)), which followed from the matching of the expressions

for the time, are used, there follows for 7(x) s
- -/ j/z y
\/(x)_./za4+/¢ Vx /(,+xéé (-%)
f(OﬁﬁfééﬁﬂféJ@—jgﬂfg}%ﬂ—?/(w

The expressions (30) and (31) are made identical by the following choice

of the constants —f; , V’ , K and -T'- .
< 1
_ N ! (32)
=00
VI =~/ (33)
— / - /'I‘9 - 72
K =TT ) T+ 402)- Y 7) -,

7; is arbitrary

-/
e 2
The result Vl = -~/ confirms the expression 4 = (/ 1"/// ) " which

was necessary for the time-matching since for the moon centered hyperbola

N
7 = g)_é_— —_ (L/ 2 f-LZ z) . With equs. (28), (33) and (34) the moon
34 _

centered hyperbola is now determined, the constants /ﬁ /, /p and ‘//

being expressed as
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{

Xy
\
Lty

|

= JtUS =32,
= /7//1[/

/p- = /f/ [ %+ /’/fléz)_//L
7 = K- //f/zf)%

k\‘
|

(35)

Tyhese four constants are really equivalent to three integrals because
/?7'1-?2 ol A+
so that a fourth integral 1s still needed. This is provided by the condition
that 27 0 at perilune. This condition is satisfied by the proper choice of
the phase angle T and the origin of the inner variable Z which are

determined by equ. (27) for 7; , equ. (32) for 7/; , and equ. (29) for Z .
2

The constant A which is needed in equ. (29) is simply

/77 = —Z-;‘
J A —_

It is a fortunate circumstance that 7," , the part of the phase angle | which

is proportional to ¢¢ , is‘arbitrary. T influences 7<// , and thereby the

angular momentum /Z :ATZZI . With the hyperbola's total energy deter-
mined by ZZ/ , the perilune distance can thus be adjusted by changing the
angular momentum through 7/— .

It may now be noted that the phase angle | (apart from the arbitrary
contribution /¢¢7/_ ) and two of the hyperbolic constants depend only on the
Keplerian part of the outbound trajectory. As a matter of fact, Lagerstrom

and Kevorkian derived 7; and 7; in the very beginning of their analysis
2.
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and on the basis of the outbound Kepler trajectory alone, For the purpose
of this presentation of their analysis it was felt that the modification in which
7; and 7; are derived from the matching conditions is a little more in
2
line with the general principle of the method of singular perturbations; this
principle being the determination of certain constants, which leave the inner
and outer expansions indeterminate, from matching conditions.
Furthermore, it is noted that the first order corrections of the outbound
trajectory enter into the matching conditions only through the functions 3’//°>
(in the determination of T ) and /O(/f’)—- X/f)) (in the determination of
K' ). The functions Y and f){ become unbounded as ,/J_——,> |, i.e. for
minimum energy trajectories, but the difference (J——}/) was shown to be
finite (ref. 11). The difference [5— X] may be interpreted as the correction
of K , required if k' were determined on the basis of the Keplerian
trajectory alone, Since K is the :/ -intercept of the approach asymptote
of the moon-centered hyperbola at X =1 , it has been claimed that [(‘{— Y)
is a measure of the error made in the usual methods of ''patched-conic"
computations; (o(* Y‘) is then simply the miss-distance of the approach
trajectory. Because of the basis difference in the two methods (which has
been pointed out earlier in this report: patching conics is geometric, while
matching inner and outer expansions is analytic) a comparison on the basis
of (3(" ?r) tends to come out unfair for the patched-conic method. It
would be interesting to see how the corrections f/ and \/’ contribute to the

outbound trajectory near its intersection with the moon's sphere of influence.
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And if a thorough comparison of the two methods were desired, it should of
course be based on final numerical results for representative trajectories
computed by both methods. Lagerstrom and Kevorkian themselves have not
provided such a comparison, except by pointing out that (n“— Y) is a measure
of the patched conic error; in ref. 5 there are comparisons with exact (i.e.
numerically integrated) trajectories, but whether or not the results say much
for the two-variable expansion method depends mostly on what kind of errors
one is willing to except.

3.6 The Composite Solution

The outer and inner solutions have been formulated and their singular
behavior has been identified. By matching these two solutions in their over-
lapping region of validity the phase angle and the constants of the moon
centered hyperbola have been determined. To complete the work a composite
solution must be formulated. According to the singular perturbation theory
the composite solution is obtained by adding the outer and inner solutions
and subtracting their common part. That common part is just the inner
solution evaluated in the outer region (that is for at X —> — =<), or the
outer solution evaluated in the inner region (that is for X —> | ); these
two evaluations are identical because that was just the condition for matching.
Here it is convenient to use the inner solution evaluated for )—(———-> — >,

According to equ. (8) the outer solution is

Y X ) =~—/é’//‘/>), (X, 1) F Ly (x)

where 7L and X are known functions, y exhibiting a singularity for x--» /.
2

26




According to equ. (3) the inner solution is
Y (%, 0) = V. Ay (X)
. , — X- £
where the moon coordinate )/ — i (If —7") X = __/_é_g,_
7z
with Zf)z = (¢ (f 7—) and Y(X) is the equation of the moon-centered
hyperbola. According to equ. (3) and (21), the inner solution evaluated for

X —> — ©o is

7(/)()#)- =V # 57(%)

fomooo (7

with = /oy l/l/"_. /(I
5 (X)= n 7

The composite solution for \/ is thus

y (x,a) :—//‘y/z (X 1)+ pey, (x) +/L/7 (X) — o (>'<)]'

and in the same way the composite solution for £ (X/ /a/) is found to be

(X n)=12, () rut (X) +/¢[£(;) —/9(,7)] (36)

- < - 3/
where //?) ()( = 2o/ z /&/7 (37)
/ ) LL [( a %

If analytical expressions for f/ (X) and YI(X) were available it would
be observed that their singularities are cancelled by the singularities of the
expressions in square brackets; this is for instance the case in the analysis
for the two-fixed center problem (ref. 3). In the absence of analytic expres-
sions for {, and v, the singularities must cancel numerically. Now, to

determine just the geometry of the moon centered hyperbola (determined by
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the constants in equ. (35), the functions i‘ and \/‘ themselves are not
needed, only the function (r(' )’) is. (- Y) depends on the initial con-
dition —/)Zonly and can be computed and tabulated once and for all. However,
if the time-dependency and the entire trajectory is needed, the functions %,
and Y. ,» as well as the expressions in the square brackets of equs. (36) and

(37) must be computed and their singularities made to cancel numerically;

this may be expected to cause some numerical difficulties,
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4., THE OUTER EXPANSION IN ROTATING COORDINATES

In the previous section it was shown that the application of singular
perturbation theory results in a uniformly valid solution to first order of
for a certain class of trajectories in the restricted three body problem. In
principle this is a satisfactory solution, but practically there are some
difficulties because this solution is left in terms of quadratures which must
be numerically integrated. Furthermore, since the formulation was carried
out in a non-rotating coordinate system one may ask whether a formulation
in a different coordinate system would be more advantageous.

Therefore, in conclusion, the following items are cited as possibly
leading to improvements or analytical simplifications for this type of first
order solution:

1) to obtain analytical approximations for the quadratures which
depend on some parameter of the zero-order ellipse (in this case the energy);

2) to represent the problem in a rotating coordinate system as a third
order system of differential equations by making use of the Jacobi Integral.

An investigation of the second recommendation has been initiated and
in what follows the results for the outer solution are outlined in terms of
quadratures. As a result of this investigation it was found that in addition
to the choice of a rotating frame of reference the choice of polar coordinates
was a decided advantage for the following reasons:

1) The solution for time is obtained from the first order differential

equation provided by the Jacobi Integral;
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2) The occurrence of elliptical integrals in the zero-order solution for
the time is avoided when the radius is used as independent variable;

3) A solution in polar coordinates readily lends itself to extension to
three dimensions.

The details of this analysis follow.
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In the planar restricted three body problem assume a non-rotating
earth-centered coordinate system with axes X, Y parallel to some inertial
axes and let the earth-moon distance equal 1 while the masses of the earth
and moon are 1- 4¢ and.tc respectively and the gravitational constant k%=1,

The Lagrangian for a massless particle at (x,y) is from Reference 7:

-1 1-
L=1 .2 .2 M AL : (38)
2'(x +Y)+—r’ +r_2 bt (x cost+ysint)
In this system the moon rotates with angular velocity &« =1 and the
transformation to a rotating coordinate system X*, Y* with the moon at unit

distance on the X axis is:

x% = x cos t + y sin t
(39)
y* = -x sin t +ycost
where in polar coordinates relative to the rotating coordinate system:
x% = r cos 0¥
(40)
y* = r sin 6%
and r = r*, The Lagrangian in relative polar coordinates
becomes:
L* = = [rz + (r G*)ZJ + 120 + 1_;('1' + A~ - 4 T cos o™ (41)
r
: 2
2 « | 12 2 (yn2 | 12
where: r, = 1+ r” -2r cos 67 = (r-1)" -
r

Since L™ is time independent there exists an integral of the equations of
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motion known as the Jacobi integral which is equal to the Jacobi Constant C'

for the relative energy. Thus the expression for the relative velocity becomes:

#2 4 r2 (0%)2 = £2 4 Z(Ir'/“*) 4 Zr/’— -2 4 rcos 8F - C (42)
2

An asymptotic series solution of the following form is to be obtained:

t=t,(r) + 4 ty(r) +0 (,/LZ)
(43)

At

0" = 0% (r) + 4 8} (r) + 0 (4P

where ¢ .0l. The zero order solution is a two body ellipse relative to

the earth with elements a and b, e, i, w', S22, 7T and constant angular
momentum l/o and energy h,. It will be assumed that the initial conditions
are taken at the perigee. Then the solution for £ is essentially a first order
approximation to a "Kepler's Equation'' for a special class of lunar trajectories
in the planar restricted three body problem and t is exactly Kepler's equation

for the two body problem:

cos—l(a_r)-e ‘/1- (a—r)Z (44)

- -ed) -
G;;=cos1 a(l-e”) - r _t_k]),

re (o] 1

where Wi is an initial phase angle between the semi major axis and the x*
axis. Such a zero order solution is valid since Lagerstrom and Kevorkian,
Ref. 4, have shown that within a small neighborhood of the earth of 0 (/,:‘ )

14 3o

the motion is Keplerian up to order « Hereafter the subscript zero

32




refers to values for the zero order solution and the subscript i refers to the
initial conditions.
The Lagrange equation [L:l 0 - 0 provides the following expression

for the change in the total angular momentum:

- r sin 687

d N sk
= (1‘29* + rZ) = + r sin 6~
dt (rp) 3 (45)
Integrating for a first order approximation gives:
r B
-r sin 60 dt
r2 0% + 12 - ’/o:/“ 7 N3 trsin®j —2 ar
r o dr
(*200))
(46)

Clearly the integrand in equ. (46) is expressible as a function of r through
eqs. (44). However due to the transcendental nature of the resulting expression
for the integrand an analytical integration cannot be obtained directly. Instead
an approximation for the integral dependent on certain parameters of the zero
order solution can be determined and exercising choice as to the form of the
approximation will allow some simplification of the solution for t. Now 6"

becomes:

eo + ,ué”l‘: ;ézo -1+ AL P(r) (47)

where the approximation for the integral has been incorporated in P (r).
Now the Jacobi Integral, equ. (42) provides a first order differential

equation for t after substituting for 6™:
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2

r

£ 2 f 1
2L, -°C)r%+2(1-p) r A2 2 r? <r2(0) +
P(r) (r2 - [0) - A -1 cos 60> (48)
and
t! = -
o - —
\/ (2 fo S2¢)e2 421 -y v - L2

where 2C = 2 ( /o - hy) is the energy constant for a two body orbit relative

to a rotating reference frame and A = c! - 2C. Note that in equ. (48) both

and P(r) become unbounded as r, —% 0; however, the combination
of these terms should remain bounded insuring that % is bounded near the
moon,

Similarly 8™ ' is obtained from equ. (48):

oF 4 /‘9::1: =55 to, -t + —— ti + A P(r) tc; (49)

r r

where again the prime denotes differentiation with respect to r.
This completes the outline of the outer .solution. A similar investi-
gation of the inner solution and the results of matching the solutions will be

final deciding factors in the determination of the practicality of this approach.
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5. CONCLUSION

Interpreting the restricted three body problem as a singular perturbation
problem results in a uniformly valid solution to first order in the small parameter

A for earth-moon trajectories. This solution can be thought of as being com-

inner solution, "

posed of an '"outer solution, " valid near the earth and an valid
near the moon. The outer and inner solutions are matched in their common
region of validity by determining certain constants (i.e. the initial phase angle
of the moon and the elements of the moon-centered hyperbola) in such a way
that the singularities which appear in the inner and outer solution vanish in
the construction of the composite solution. The matching constants are ex-
pressed in terms of the initial conditions, with the exception of a part of
order 4 in the phase angle which can be chosen arbitrarily and can thus be
used to adjust the lunar perigee distance.

It has been shown that the outer solution must necessarily contain a
part that is proportional to the small parameter & in order to make the
match with the inner solution possible. A posteriori this conclusion could
have been anticipated from a consideration of the order of magnitude of the
angular momenta of inner and outer solutions. The need for this first order
correction to the earth-centered outbound ellipse seems to explain why the
usual patched conic methods (in which such a correction is not made) must
be inaccurate. But such a statement must be made with some care, since

in the two methods the matching is performed on a very different basis. In

the two-variable expansion method the outer solution is evaluated at the
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moon's distance and equated to the inner solution evaluated far away from
the moon, but far away in terms of the "blown-up' inner variable. Although
this procedure makes good sense analytically, it is hard to see what it means
geometrically. On the other hand, in the patched-conic method the earth
centered ellipse (an uncorrected outer solution) is evaluated at the sphere

of influence of the moon and equated to the moon centered hyperbola (the
inner solution, but in physical variables) at that point. To make a sound
comparison of the two methods, it should be based on the final numerical
results, or at least one should determine how much the first order correction
of the outer solution contributes to the Kepler ellipse up to the moon's sphere
of influence.

The composite solutions, in particular the first order correction, is
left in the form of quadratures for which no analytic expressions has been
found yet. Therefore, although in theory the singularities of outer and inner so
solutions cancel, the singularities must be evaluated numerically. This will
cause numerical problems if the entire trajectory is to be known as a function
of the time. On the other hand, if it is sufficient to just know the elements
of the moon centered hyperbola, the quadratures need not be evaluated entirely.
Only the parts of the first order correction indicated by ‘}///’) and cf/ﬁ)
are required, and in particular their difference (0[’ )/> . The.se functions
depend only on the total energy —-ﬁz and can be evaluated once and for
all for any interesting range of energies. There is an additional difficulty

since 0( and X tend to infinity for minimum energy trajectories, but even
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there the difference (0(— X) remains finite.

These difficulties may limit somewhat the practicality of the methods
depending on how much trouble one would want to go through to write a com-
puter program that evaluates the quadratures. Even so the method is of
great interest and a similar development may be attempted along some

different approach. Such a different approach is given in Section 4.
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